ON THE PROBLEM OF THE DIFFUSE
REFLECTION OF LIGHT!

The problem of the diffuse reflection of light by a scatter-
ing medium consisting of plane-parallel layers is considered for
multiple scattering.

The problem of the diffuse reflection of light by a medium, every volume
element of which both absorbs and reflects (turbid medium), has remained
unsolved, even for the simplest case of a medium consisting of plane-parallel
layers and a parallel beam of rays falling on the boundary of the medium.
The aim of the present paper is to show that in this case the problem admits
a solution by rather simple means.

Consider a medium consisting of plane-parallel layers bounded on one
side by a plane A and extending on the other side to infinity. A beam
of parallel rays falls on the surface A and penetrates into the depths of
the medium, undergoing absorption and diffusion. Denote by 6y the angle
formed by the direction of the rays with the internal normal. Let ¢ be the
azimuth of the incident rays, computed from some given direction on the
surface A.

The usual method of studying the problem consisted in considering the
equation of flux:

if%ﬂﬂ — I(r,0,¢) — B(r,0,¢) (1)

and the generalized steady state equation for flux:

B(1,0,¢) =

cos

(2)

= % //x(cosy) I(1,60,¢') du’ + % S exp (—Tsecbp) z(cosv1),
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90 Problem of the Diffuse Reflection of Light

which expresses the fact that the radiation of unit volume is made up of the
energy of rays passing through the volume element in different directions,
which is scattered by it, and of the scattered energy of the original beam
attenuated exp (—7 secfp) times on its path to the given unit volume ele-
ment. In these equations I(7, 6, ¢) is the intensity of the diffused radiation
at the optical depth 7 in the direction forming an angle § with the external
normal and having an azimuth . The optical depth 7 is determined for
the usual linear depth z computed from the boundary A in terms of the
volume coefficient of extinction of light a(2z) by means of the formula:

T = /Oz a(z)dz.

B(1,6, ) denotes the escaped radiation defined in terms of the coefficient
of radiation 7(7,0, ¢) at a depth 7 in the direction 8, ¢ and a:

B(r,6,¢) = 1059,

«

)\ is the ratio of the coefficient of pure scattering to the sum of the coeffi-
cients of absorption and pure scattering; 7 S is the flow of external radiation
falling on a unit surface perpendicular to it. And finally, z(cos~) is a func-
tion called the scattering indicatrix, which gives the relative distribution of
radiation scattered by a volume element from a direction 8, ¢ in a direction
¢, ¢’ depending on the scattering angle y between these two directions; the
latter is defined by the formula:

cosy = cosf cos§’ + sinfsin @’ cos(p — ¢'). (3)
Instead of z(cos~y) we shall also write
(0,956, ¢") = z(cos7).

As for the angle v; between the direction 6, and the direction of the

incident radiation,
cosy; = — cos 8 cos By + sin 8 sin fg cos(p — o).

Equations (1) and (2) are usually solved approximately by averaging more
or less roughly over the angles, or the system (1) and (2) is solved by
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reduction to one integral equation for an unknown function B(7, 0, ) from
which the intensity of radiation emerging from the medium is obtained
by integrating. In our approach, the problem is reduced to a functional

equation, which we shall proceed to solve.
Derivation of functional equation

The quantities I and B entering (1) depend not only on the arguments ¢
and ¢, but also on parameters 6o, o characterizing the direction of external
radiation. In particular, the value of I for 7 = 0, i.e., the intensity of the
diffuse radiation I(0, 6, ¢) emerging from the boundary, which we call the
diffusely reflected radiation, will also depend on parameters 6, po. We now
denote the intensity of this radiation by

I(O’ 0,()0) = 1‘(0, "2H 007900) Sa

since due to the linear character of the problem it is proportional to the
incident flow 7 S. The function r(0, ¢;8, o) characterizes the diffuse re-
flection power of our medium. If the flux incident on the medium is not a
beam of parallel rays, but radiation is coming from various directions 6o, 0o
where 6y, as before, is the angle formed by the radiation with the internal
normal, then the intensity of the diffusely reflected light I2(6, ) will be
equal to

1 27( -721 .
I(0,¢) = ;T-/o '/0 (8, ©; 60, v0) 11 (00, o) sin g dfo dipo. (4)

We shall look for the function r» which we call the reflection function.

Let us return to the case of a parallel beam of rays and construct a
plane A’ at an optical depth dr from the boundary plane A. At the plane
A’ we have two kinds of radiation penetrating the interior: 1) incident
radiation 7.9, attenuated to the value 7 S (1 — secfy d7) and 2) radiation
diffused from the above layer of optical depth dr. Its intensity, as evident

from the equation of flux, equals
—B(0, 0, p) secldr,

where secd < 0 since for lux moving towards the interior of the medium
the angle with the external normal § > Z. If instead of 6 we introduce the
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angle formed with the internal normal 6’ = 7 — 6, then the same intensity
is given by
B(0,7 — &, p)sect dr.

The part of the medium under A’ reflects both radiations diffusely;
the function r characterizing reflection remains the same, since the removal
of a layer dr from a medium of infinite optical thickness does not affect
the diffuse reflection power of the medium. This invariance of the diffuse
reflection power of a medium with respect to the removal or addition of a
layer comprises the point of departure in our method.

Utilizing the definition of the function r we find that A’ should reflect
in the direction 0, ¢ with an intensity

Sr(0,p;60,p0)(1 — seclg dr)+
d
+ -;T //r(O, ©0; 60,0 )YB(0, 7 —6,¢) sec# sind’ db’ dy'.
On the other hand, on the basis of the same equation of flux, we
can write down the intensity of radiation moving outwards from the plane
A’. Indeed, for 7 = 0 the intensity of radiation directed outwards equals

(8, v; 6o, po) S. Hence, according to the equation of flux, at a depth dr it
will be

S1(6,¢;60,00)(1 +secfdr) — B(0,6,p)secldr.

Equating these two expressions for the intensity of the outward flux
from the plane A’, we obtain:

(sec @ + sec By)r (6, p; 6o, o) S =

5
= B(0,6, p) sec + %// r(0,;60',¢") B0, —¢',¢') tan 6’ do’ dyo'. &)

On the other hand, putting 7 = 0 in (2), we find for B(0, 6, )

B(0,6,¢) = % - Sz(cosy) + % // z(cosy) I(0,6, ¢ ) sin ¢’ d¢’ d’

or, since

I(0,6',¢") = Sr(0,¢'; 6o, 0o),
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we have

B(0,8,¢) = é - S z(cosy )+

AS 27 (6)
+ = / z(0,0,60,¢0)r(8,¢; 00, 0) sin b’ db’ dy'.
Inserting (6) in (5) we find
A
(sec 8 + sec )7 (8, ¢; 0o, o) = 1 z(cos 1) sec 6+
A 2m 5
+-——sec9/ / z(6,0;0, ') r(6',¢'; 60, 0) sin 6’ d§’ dy’ +
27 7
+—- / (6, ¢;6',¢") x(8',¢; 60, o) tan 8’ do’ dy'+ ™

2r 2
47r2/ /// r(6,¢; 6, ¢ ) x(m — 0,95 6",¢")x

x (8", ¢"; 60, 0) tan @ sin 0 d6’ dy' d6” dy”.

This is the main functional equation for the function (6, ¢; 8o, o)
characterizing diffuse reflection. For convenience in writing we shall take
the argument of the functions 7 and = to be 7 = cosf. We shall write
cos® = 1/, cos@” = n’ also. In this case our functional equation can be
rewritten in the form

(1+1)r( : )—/\ z(n, ¢; )+
n o 7, ¥; Mo, o 77 17, ¢¥; —7o, Po

27
/ z(n, 057, ¢ ) r(1', '3 M0, po) dn’ dp’+

4

27 27
47r2 // / r(n, 0, @) z(—n', 50", ") %

x r(n", <p”; Mo, <po) -n—, dw’ dn” d¢”.

27r
dn’
+— / r(n,o;7, ")z, ¢'s no,<po)'n—d<p+ (8)

This equation becomes more symmetrical if we insert

A
- R(U, ¥; 7o, 800)- (9)

(N, ©; Mo, o) = I
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Indeed, we shall then have:

1 1
(_ + _) R(n’ ®; Mo, (po) = .’13(77a ¥ —7o, 900)_*-
n 7o
2r d
+4—7r / z(n, o3’ ¢") R(', ¢'; no,SOO)';?"d‘P'*'
21r d
A an’ 10
+47r /R(n,w,n @) z(n', ¢’ 10, P0) p de’+ (10)
27 27
mwz////R(n,so,nso)(nson ")
dn/
x R(n", ¢’ no,cpo)— ' 7;7 de”.

This equation possesses the following property: if it is satisfied by some
function R(n, ¥;n0, o), then it is also satisfied by the function R(7yg, ¢o;
¢) (arguments reversed). On the other hand, since our physical problem
has but one solution, equation (10) also has but one regular solution. Hence,

R(n, ©; 10, 0) = R(n0, o; M, ¢), (11)

i.e., the function R is symmetrical. This is in complete agreement with the
symmetry of the expression

A
nr(n, ¥;No, o) = 1 R(n, ¢;m0, ¥0)

derived from physical considerations in [1].
Expression of the indicatrix by means of Legendre polynomials

In several theoretical approaches (Rayleigh’s formula), the scattering
indicatrix is represented in the form of a finite sum of Legendre polynomials.
In the general case it can be developed in a series by Legendre polynomials.
If we assume only n + 1 terms, then

z(cosy) = Z z; P;(cos 7). (12)



A Life in Astrophysics 95

Since the function z(cos<y) gives the relative distribution of the directions
of scattered light in an elementary act of scattering, it satisfies the normal-

%‘//a:(cos'y)dw———l

ization condition

or

1 (7 1 [

—/ z(cosy)sinydy = —/ z(n)dn = 1. (13)
Condition (13) gives the value zo = 1 for the first coefficient in the series
(12).

In the case of a spherical scattering indicatrix we have simply

z(cosy) =1,
i.e., only one term in the development.
In the case of the Rayleigh scattering indicatrix ,

z(cosy) = %(1 + cos?y) =

1/3 1 1
1+ 3 (5 cosz'y - —2-> = Py(cosvy) + §P2(COS’7),

i.e., in this case zo = 1 and zo = 1/2, while all the other coefficients are

equal to zero.
Of considerable interest is the group of elongated scattering indicatrices

of the type
z(n) =1+ z17,
where the quantity z; characterizes the degree of elongation of the indica-
trix in the direction of the incident ray.
In what follows we shall utilize the development (12) to solve the main
functional equation (10), assuming that n can be both finite and infinite.

Solution of the main functional equation

According to the well-known formula for the addition of spherical func-

tions:
P;(cosy) =P; (cos 0 cos 8’ + sin@sin &’ cos(p — ¢')) = P;(cos §) P;(cos 0')+

+2 Z Pm (cos §) P[™(cos ") cos[m(p — ¢)].
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Hence the scattering indicatrix z(cos+y) can be written in the form

Mg

>

z(cosvy) = Cim P™(cos ) P™(cos8’) cos[m(p — ¢')] =
m=0i=m
=3 "> cim PM(n) P(n') cos[m(p — ¢')],
m=01i=m
where
=(2-46 )x-(i—m)! (m=0,1,2,...)
= Oom l(l—}-m)' — Yy Ly &y eer )y
and

500=1 and 6Om=0 if m760

or in the form

z(cosy) = Z gm(n,m’") cos[m(p — ¢)],

m=0

where

= Z cim P (n) P™(n')

i=m

are symmetrical functions of their arguments.

(14)

(14)

(15)

(15')

The reflection function r, and hence R, depend on the difference be-

tween the azimuths ¢ — g of the incident and reflected light.

Also R must be an even function of ¢ — ¢, since it is invariant with

respect to a change in the zero direction of the azimuths. In view of this,

in the Fourier development of the function R will have the form

R(na @5 N0, 900) = Z fm(n) 770) COS[m((p - 900)]

m=0

(16)

Our task consists in finding the functions f,,,(n,79), i.e., the Fourier
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coefficients of the function R. We insert (16) and (15) in (10). This gives

(l " l) i fm(n,m0) cos[m( — o)} =

n 7o

}:qm ~10) cos[m(y — o))+

m=0
A oo co m(cp (PO] 1 , , dnl
+5 ngo 25 qm(n,n)fm(n o)+
A o= cos[m(p — o)) dn’
+3 Z . qm(n m0) fm(mn')—- 7

1\3 cosim{p @0)]/ / S (1)@ (=", 0") fn (0", M0 )dn an ”-

4 — (2~ bom)?

Equating the coefficients of cos[m(¢ — )] on both sides we find

(;17- + %) fm(m,m0) = gm(n — 10)+

!/

1
+ 2(2 )\5 m)'/ [‘Jm(n,nl)fm(ﬂ',ﬂo)+Qm(77’,770)fm(77,77')]d—7z-+ (17)

dn dn”
+—(2 60m)//fm77, ) am(=7",1") fm(n”, "0)77 7

We thus have obtained functional equations for the Fourier coefficients

fm(n,m'). Each f,(n,mo) can be found separately.

It is evident from formulas (14) and (15) that if the development of the
scattering indicatrix by Legendre polynomials contains only a finite number
of terms, n being the degree of the highest term in the development, then
for m > n all the ¢,,(n,m0) disappear. Equations (17) show that in this
case for m > n the f,, also disappear.

In the Fourier development (16) of the reflection function the number
of terms is equal to the degree of the highest term in the development (12)
of the scattering indicatrix by Legendre polynomials.

Let us now investigate equations (17) for the functions f,,(n,m0). To
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this end we insert (15) in (17), which yields

oo

(% + %) fra(n,m0) = 3 (=1)"*™cim PI™ () PI™ (10)+

i=m

b S P / Py S0 2
2(2 _ 60m) Pt Tm+ 0 1 m ) T’,

/

A > m ! my. ! ,d’l)
+mzqm3 (770)/ P (n)fm(n,n);;,-+

2 z+m
+ZA4§21 e [ ) mtn )L [ PO e

II

We see that the right-hand side can be represented as a sum of products:

1 1
(-ﬁ + %) fm(n,m0) =

=§j<—1)i+mcim [Pi"‘(n)+2((21 1;"“ / Frn(m, ) P () 2L } (18)
X [P["(no) 20 l;::/ fm(n'sm0 Pm(n)ci;?}

In view of the symmetry of the function f,,(n,1n0) the two factors in
parentheses, entering each term of the sum in formula (18), represent the
same functions, one depending on 7, the other on 7. In other words, (18)
can be rewritten

(;17- -nl—) n(110) = Ym0 ), (19
where
@i (n) = P (77)+ 2 — o) / fm(m,1') P} (n) (20)

It follows from (19) that the function f,,(n,70) has the structure

oo

Fm(n,m0) = 3 (~1)+m omh 1(7: & ) (21)

i=m



A Life in Astrophysics 99

The equations for the auxiliary functions ¢[*(n) are obtained by inserting
(21) into the right-hand side of (20):

@7 (1) = P (n)+
L LD /1 = (CDMH " G ) ) prn,ry . 4
(2—'60m) 0 p—m %+# z ,

or (using (14'))

Ao, ik, B=m) Mo oR M) pmy g, (22)
3 S () o [P Pty ay

Putting ¢ = m, m + 1, ..., we derive from (22) a system of functional equa-
tions for the unknown functions ¢%(r), ¢/, 1(r),... For each m the num-
ber of unknown functions is equal to the number of equations. If n is the
degree of the highest Legendre polynomial in (12), then the total num-

ber of unknown functions as well as the number of functional equations
] (n+1)(n + 2)

. However, the entire group of equations divides into a
number o% subsystems, corresponding to various m. The subsystem for the
function ¢}, where m has a fixed value, can be solved independently of the
other subsystems.

We summarize: the unknown function R of four variables by means of
formulas (16) and (21) is expressed via functions of one variable ¢*(7), the
latter functions themselves being determined by the system of functional
equations (22).

This form of representing R is especially convenient in the case of
a finite development (12) of the scattering indicatrix, as seen from the
particular examples which follow.

Spherical scattering indicatrix

In this case
z(cosvy) =1 (23)

and all the z;’s are zero for ¢ > 0. The highest polynomial in the devel-
opment of the scattering indicatrix is of zero degree. Therefore, only one
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term is left in the development (16), corresponding to m = 0

R = fo(n,m0). (24)

Formula (21) is reduced in this case to

foln, o) = £8Le8(m0) (25)

and the unique auxiliary function pQ(n) is determined from the one func-
tional equation

A0 =1+ Jnglen) [ ADIL (26)

to which system (22) is reduced. For each A this system is easily solved
numerically by the method of successive approximations.

The case of spherical scattering indicatrix has been discussed by us in
[2] where tables for different values of A obtained are given.

Elongated scattering indicatrix
Consider an indicatrix of the type
z(cosy) =1+ x1 cosy. (27)

If z; > 0 such an indicatrix is elongated in the direction v = 0, whereas in
the case of z; < 0 it is elongated in the direction v = 7.

In these cases the degree of the highest Legendre polynomials in the
development of the indicatrix is one. Hence (16) reduces to

R(n, ;m0,v0) = fo(n,m0) + f1(n,m0) cos(¢ — o). (28)

As for fo and fi, according to (21), they have the following structure:

fo(m,m0) = ©p (1) <P8(no)1 +.'E1(p(1)( )90‘1’(770)’

1
fi(n;m0) = 1 Mf‘li(ﬂ)l-

(29)

1
n
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The auxiliary functions 9 and ¢ should be determined, according to (22),
from the subsystems

A 1,0 " dn' )\ 1. 0 ’d'
¢8(n)=1+5n<p8(n)/0fl(ﬂ—)—,—"— ) ncpl(n)/o m,

n+n n+mn
w%)— (30)
wo(n') 0 dn o3(') ' dn’
n)/ 0n+n nsol(n)/ e

and the auxiliary function (!(n) from the equation

‘Pl 7)1~ d77 (31)

77+77

A
e1(n) =vV1-n%+ Z:vlwi(n)/o

The last equation can be solved numerically by successive approximations.

By multiplying by /1 — n? and substituting ¢1(n)/1 — n% = ¥(n) we bring

it to the convenient form

Ly dn’

32
n+n (32)

/\:131
Y(n) =1-n"+==n9(n) A
A simple relation exists between the functions ¢ and ¢} given by
(30). To establish it we transform the second equation of this system by
substituting

"

n+n 0 n+n
Hence

A 1 Az 1
pin) =1- ) -nsog(n)/o eo(n')dn’ + Tl -W‘l’(n)/o (n') dn'+

A 0 /1 808("7’)6177’ AT1 4 ¢ /1 <P(1)(77') dn’
+ = - L LU hall
57 vo(n) e 5 v1(n) e

On the basis of the first equation in (30), the last two terms here can be
replaced by
1 (95(n) = 1).

Therefore, in terms of constants:

1 1
o= / Smdn,  B= / 2 () dn, (33)
0 0
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we have

PAl) = ~—t——. (34

Table 1. Values of ©)(7).
Scattering indicatrix xz(cos<y) = 1 4 cos+y

n\\ 04 05 06 07 08 09 10

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.054 1.070 1.088 1.109 1.134 1.166 1.248
0.2 1.080 1.106 1.136 1.171 1.215 1.276 1.450
0.3 1.097 1.130 1.168 1.216 1.276 1.365 1.642
0.4 1.108 1.146 1.192 1.249 1.324 1.439 1.829
0.5 1.115 1.157 1.208 1.274 1.382 1.502 2.013
0.6 1.119 1.163 1.219 1.291 1.391 1.535 2.194
0.7 1.120 1.164 1.226 1.304 1.414 1.599 2.375
0.8 1.120 1.167 1.236 1.312 1.431 1.637 2.552
0.9 1.118 1.166 1.230 1.317 1.443 1.669 2.730
1.0 1.115 1.164 1.228 1.318 1.452 1.696 2.909

Table 2. Values of ©9(n).
Scattering indicatrix z(cos<y) = 1 + cos~y

n\A 04 05 06 07 08 09 1.0

0.0  0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1  0.083 0.077 0.071 0.064 0.054 0.041 0.000
0.2  0.172 0.162 0.150 0.136 0.118 0.090 0.000
0.3  0.264 0.251 0.235 0.215 0.189 0.177 0.000
0.4 0.359 0.344 0.324 0.299 0.265 0.210 0.000
0.5  0.456 0.439 0.417 0.387 0.346 0.277 0.000
0.6  0.555 0.536 0.512 0.478 0.431 0.349 0.000
0.7 0.654 0.635 0.609 0.572 0.519 0.425 0.000
0.8  0.755 0.734 0.708 0.669 0.610 0.505 0.000
0.9 0.856 0.836 0.808 0.767 0.704 0.588 0.000
1.0 0.959 0.939 0.910 0.867 0.800 0.674 0.000

Thus ¢9(n) is expressed through ¢8(n), but two constants o and 3
enter, which are determined from (33). The first equation in (30) in con-
junction with (34) and (33) completely determines the functions ¢§ and
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¢). The numerical values of the functions 3, ¢©9 and ¢! obtained by the
method of successive approximations for different A and for z; = 1 are given
in Tables 1, 2, and 3. Our solutions are accurate up to the third decimal.

Table 3. Values of (7).
Scattering indicatrix z(cosy) =1 + cosvy

n\A 04 05 0.6 07 08 09 1.0

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.1  1.016 1.021 1.027 1.032 1.038 1.044 1.051
0.2  1.010 1.018 1.026 1.034 1.043 1.053 1.062
0.3 0.988 0.998 1.007 1.018 1.028 1.040 1.050
0.4 0954 0964 0.975 0.986 0.997 1.009 1.022
0.5  0.903 0.915 0.926 0.938 0.951 0.982 0.976
0.6  0.836 0.647 0.859 0.870 0.883 0.895 0.908
0.7  0.749 0.759 0.770 0.780 0.790 0.804 0.815
0.8  0.632 0.640 0.648 0.658 0.668 0.679 0.688
0.9  0.459 0.466 0.4730 0.479 0.486 0.494 0.502
1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

For an indicatrix of the type considered, special attention is attached
to the case A =1 (i.e., pure scattering, in the absence of absorption) with
arbitrary ;. In this case the system (30) is satisfied if we put ¢ and ¢
equal to the solution of (26) for a spherical scattering indicatrix.

If we put A =1 and ¢ = 0 in (30), then our two equations are reduced
to the following:

1 ' od(n') dryf
Oy =14 =.n¢° / Yol T 35
1 0 wo(n')n' dn’ dn
==. 36
5 " ¥ n)/ —— (36)

The first of these is identical to (26). Let us prove that the second is also
equivalent to (26).
Under the integral sign in the second equation we substitute
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and obtain

1
1= %cpg(n)/o wo(n) dn’ — Wo('n)/ %~ (37)

On the other hand, integrating (36) with respect to 7 we obtain:

//cpo n)n' dn'dn _
n+n
1[ /! ?
-—-—/ / wo(n) po(n')dndn’ = < / po(mdn|
4Jo Jo 4 Lo

1
/0 wo(n) dn = 2.

Substituting this value in (37) we see that (36) reduces to (26). Thus, for
A = 1 both equations (30) are satisfied if ¢3(n) is taken as equal to the

l.e.

solution of (26), and ¢! equal to zero.
Therefore, on the basis of (28) and (29) we can write for the function

of reflection R:

0 0 1 1
R= wo(f) 901(770) . sol(f) @11(770) - cos(yp — o)
n 7% n T e

After averaging over the azimuth, the second term disappears and we come
to the following remarkable result.

In the case of pure scattering the reflection function for an elongated
indicatrix z(cosvy) = 1 + z; cos~, averaged over the azimuth, is exactly
equal to the reflection function (25) for a spherical scattering indicatrix.
For A # 1 this rule no longer holds.

Remark on Lambert’s law

In photometry in addition to the reflection function r(n, ¢;no, o), use
is often made of the coeflicient of brightness

A

T
p_—._—:—
n  4nno
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According to Lambert’s empirical law for certain material in which A is
close to unity, p is constant. In the case of a spherical scattering indicatrix
it follows from (25) that

_ A po(n) ¢(m0)
4 n+7n

For A = 1, using the values of ¢3(n), we present in Table 4 the values
of the coeflicient of brightness for various pairs of values of n and 79. We
see that for angles 6 and 6y, not too close to 90°, the quantity p is almost
constant and has values close to unity. On the basis of the results of the
preceding paragraph, we can assert that for a spherical indicatrix of the type
1+ cos~y the mean (with respect to the azimuth) coefficient of brightness
is almost constant and close to unity. For an arbitrary scattering indicatrix
and for A = 1, the coefficient of brightness, averaged over the azimuth, for

not too large angles with the normal, is almost constant and close to unity.

Table 4. Spherical scattering indicatrix.
Coeflicients of brightness for A = 1.0

n\n —0.0 01 02 03 04 05 06 07 08 0.9 1.0
0.0 — 3.2 1.810 1.370 1.140 1.010 0.913 0.849 0.798 0.758 0.728
0.1 3.12 1.95 1.510 1.280 1.140 1.050 0.977 0.926 0.884 0.862 0.825
0.2 1.81 1.51 1.320 1.190 1.110 1.040 0.994 0.957 0.925 0.900 0.878
0.3 1.37 1.28 1.190 1.130 1.070 1.030 1.000 0.975 0.953 0.946 0.918
0.4 1.14 1.14 1.110 1.070 1.050 1.020 1.000 0.987 0.972 0.961 0.951
0.5 1.01 1.05 1.040 1.030 1.020 1.010 1.000 0.997 0.988 0.981 0.977
0.6 0.913 0.977 0.994 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998
0.7 0.849 0.926 0.957 0.975 0.987 0.997 1.000 1.010 1.010 1.010 1.020
0.8 0.798 0.884 0.925 0.953 0.972 0.988 1.000 1.010 1.020 1.020 1.030
0.9 0.759 0.852 0.900 0.946 0.961 0.981 0.998 1.010 1.020 1.030 1.040
1.0 0.728 0.825 0.878 0.918 0.951 0.977 0.998 1.020 1.030 1.040 1.060

Hence, the theory brings us to the following conclusions and limitations
in the applicability of Lambert’s law:
1) It is applicable only to purely scattering media.
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2) It refers only to a coeflicient of brightness averaged over the azimuth
and does not take into account the dependence on the azimuth.

3) Even with these limitations it is valid only for not too large angles
of incidence and reflection (up to 70°).

This method of solving the classical problem of the scattering of light
can be easily generalized for the case of layers of finite optical thickness.
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